Abstract
Micrometer-sized, monodisperse, “hamburger-like” polystyrene (PS)/poly(2-ethylhexyl methacrylate)/decane composite particles were obtained by seeded dispersion polymerization of 2-ethylhexyl methacrylate with PS seed particles in the presence of decane. The morphological stability of the hamburger-like particles was investigated based on thermodynamic and kinetic aspects. The hamburger-like morphology was maintained at 60 °C (above glass transition temperature (T g)) for at least 1 week in spite of less thermodynamic stability than hemispherical morphology. T g of the particles gradually increased throughout the polymerization due to monomer consumption. Geometric calculation result indicates that the degree of reduction of the interfacial free energy at the early stage of the morphological development is significantly low. From these results, it is concluded the morphological stability of the hamburger-like particles is considerably high because the development from hamburger-like to hemispherical morphologies is retarded by the gradual increase in viscosity inside the particles and the significantly lower interfacial free energy reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.