Abstract

Bovine cytochrome c (cyt c) was adsorbed on a polycrystalline gold electrode coated with 4-mercaptopyridine and 11-mercapto-1-undecanoic acid self-assembled monolayers (SAMs) and the thermodynamics and kinetics of the heterogeneous protein-electrode electron transfer (ET) reaction were determined by cyclic voltammetry. The E°′ values for the immobilized protein were found to be lower than those for the corresponding diffusing species. The thermodynamic parameters for protein reduction ( $$ \Updelta {H}_{{\rm rc}} ^{{\circ \prime }} $$ and $$\Updelta{S}_{{\rm rc}}^{{\circ \prime }} $$ ) indicate that the stabilization of the ferric state due to protein–SAM interaction is enthalpic in origin. The kinetic data suggest that a tunneling mechanism is involved in the ET reaction: the distance between the redox center of the protein and the electrode surface can be efficiently evaluated using the Marcus equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.