Abstract

SUMMARY An investigation on the chemical looping reforming of ethanol process using Gibbs free energy minimization method was performed. It is found that the temperature, oxygen/ethanol molar ratio (OER), and pressure have pronounced influences on the product yields in chemical looping reforming of ethanol process. The ethanol conversion and H2 yield are 100% and 2.25 mol mol−1 ethanol, respectively, at 700 °C, OER of 1 and 1 atm. The higher temperatures promote H2 and CO production, but the higher pressures and OERs have negative effect on the H2 and CO generation. Favorable operation conditions are 1 atm, 700 °C, and OER = 1. The experimental tests were carried out in a fixed bed using a Cu-based oxygen carrier prepared by impregnation method. Working at 1 atm, the H2 concentration increased with an increase in temperature; however, it remained approximately with an increase in gas hourly space velocity. The H2/CO molar ratio was between 3 and 5 in the period of 0–30 min at 1 atm and 700 °C. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.