Abstract
Single-walled carbon nanotube (SWCNT) ensembles are characterized by their defect density and diameter distribution. Here, SWCNTs are grown using chemical vapor deposition with acetylene as the carbon source and cobalt as the catalyst and analyzed ex situ, without any modification or processing, using Raman spectroscopy. The defect density shows an activated temperature dependence (activation energy ∼0.8 eV or ∼80 kJ/mol) with fewer defects at high growth temperatures for a wide range of experimental parameters. This is consistent with a single activated mechanism, such as the catalytic healing of defects, possibly a single simple defect. Consistent with previous reports, we see that low growth temperatures produce smaller diameter SWCNTs than high growth temperatures. Elementary thermodynamic considerations of the strain energy in the lattice constrain the SWCNT diameter distribution and its temperature dependence and appear consistent with our observations. A “phase diagram” for SWCNT growth is construc...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.