Abstract

We study thermodynamic and electromagnetic properties of the local electron pair system being equivalent to that of hard-core charged bosons on a lattice. The theory of the response kernel is given and static electromagnetic properties of the model are analyzed in the superfluid phase in the random-phase approximation. The effects of quantum fluctuations on the superfluid density are analyzed in detail for cubic lattices. A generic feature of the London penetration depths ratio [{lambda}(0)/{lambda}({ital T})]{sup 2} in the considered system is the {ital T}{sup 4} behavior in the {ital T}{r_arrow}0 limit and the 3D {ital XY} critical point behavior near {ital T}{sub {ital c}} (for the screened long-range intersite interaction). In the low-density limit, a consistent description of superfluid characteristics is obtained with the use of the exact scattering length. The effects of long-range Coulomb interaction on the excitation spectrum and finite temperature properties of the superconducting phase are also discussed. Finally, we briefly comment on the relevance of our results to the recent experimental data concerning the London penetration depth and the universal critical behavior in high-{ital T}{sub {ital c}} superconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.