Abstract

Today, effective and low-emission energy systems have been needed to combat environmental problems and to satisfy the growing energy requirement in a sustainable way. In this case, it has gained importance to the production of different useful commodities with the multigeneration plant that is obtained by integrating different systems. With this viewpoint, the key objective of this work is to design and analyze the solar collector and combustion chamber-assisted multigeneration model for power, heating, hydrogen, ammonia and freshwater generation. A newly designed plant comprises a gas turbine cycle, which includes a parabolic dish solar collector and combustion chamber, a Rankine power plant, a multi-effect desalination part, a hydrogen generation part, an ammonia generation part, and a solid oxide fuel cell unit. Comprehensive thermodynamic modeling, economic analysis and multiobjective optimization are executed to observe the performance of the whole plant and sub-system by employing energetic and exergetic approaches. Moreover, a parametric investigation is addressed to review the impacts of some important point changes on the modeled plant's efficiency. Analyses consequences display that the power and hydrogen generation amounts are 12,835 kW and 0.0607 kgs−1. Also, freshwater generation capacity with desalination unit is computed as 4.89 kgs−1. Moreover, total cost rate of the modeled plant is computed as 1074 $/h. Finally, the evaluated plant's energetic and exergetic efficiency is 58.38% and 54.21%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call