Abstract
In this paper, a novel compressed air energy storage system is proposed, integrated with a water electrolysis system and an H2-fueled solid oxide fuel cell-gas turbine-steam turbine combined cycle system. In the charging process, the water electrolysis system and the compressed air energy storage system are used to store the electricity; while in the discharging process, the H2-fueled solid oxide fuel cell-gas turbine-steam turbine combined cycle system and the compressed air energy storage system are set to generate electricity, achieving zero carbon emissions in the whole process. The waste heat from the exhaust air and the hot oil of the compressed air energy storage system is recycled by the feedwater of the H2-fueled solid oxide fuel cell-gas turbine-steam turbine combined cycle system, leading to an improvement in the energy efficiency. Based on the simulation using ASPEN Plus and EBSILON Professional, energy, exergy, economic, and sensitivity analyses were applied to evaluate the performance of the proposed system. The results show that the round-trip efficiency, energy storage density, and exergy efficiency of the compressed air energy storage system can reach 68.24%, 4.98 MJ/m3, and 64.28%, respectively, and the overall efficiency of the whole integrated system improves by 1.33%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.