Abstract

The spectral and dynamic properties of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) in a series of 1-alkanols ranging from methanol to 1-decanol over a temperature range 100-300 K were investigated by electron spin resonance (ESR). The main characteristic ESR temperatures connected with slow to fast motion regime transition; T50G 's and TX1fast 's are situated above the corresponding glass temperatures, Tg, and for the shorter members, the T50G 's lie above or close to melting point, Tm, while the longer ones the T50G < Tm relationship indicates that the TEMPO molecules are in the local disordered regions of the crystalline media. The T50G 's and especially TX1fast 's are compared with the dynamic crossover temperatures, TXVISC = 8.72M0.66, as obtained by fitting the viscosity data in the liquid n-alkanols with the empirical power law. In particular, for NC > 6, the TX1fast 's lie rather close to the TXVISC resembling apolar n-alkanes [PCCP 2018,20,11145-11151], while for NC < 6, they are situated in the vicinity of Tm. The absence of a coincidence for lower1-alkanols indicates that the T50G is significantly influenced by the mutual interaction between the polar TEMPO and the protic polar medium due to the increased polarity and proticity destroyed by the larger-scale melting transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call