Abstract

To develop the in situ underground pyrolysis process of tar-rich coal more scientifically, the effect of temperature and pressure on the distribution of pyrolysis products should be clarified. This paper selected the typical components in five distillates of light tar, phenol tar, naphthalene tar, washing tar, and anthracene tar as the main reaction products. 32 typical secondary reactions were constructed. Based on the thermodynamic analysis strategy, the variation of the Gibbs free energy and equilibrium constant of secondary reactions was investigated. The results showed that pressure mainly affected the reaction characteristics of molecule-increasing reactions. The Gibbs free energy value of the molecule-increasing reactions increased with increasing pressure. The trend that the reaction could proceed spontaneously gradually weakened. The initial temperature of some reactions that could proceed spontaneously would need to increase by dozens or even hundreds of degrees. Due to the influence of formation pressure, the generation of related components of light tar, naphthalene tar, washing tar, and anthracene tar would be inhibited to varying degrees in the in situ underground pyrolysis process. The secondary reactions related to phenol tar were equimolecular reactions, which were almost unaffected by stratal pressure. Axial pressure and confining pressure of different coal seam depths should be considered in the process of in situ underground pyrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.