Abstract

Protonic ceramic fuel cells (PCFCs) offer direct and efficient conversion of hydrocarbon fuels into electricity. In this study, three internal-reforming (IR)-PCFC/gas turbine (GT) hybrid systems are proposed and analyzed to achieve higher system efficiency. High-quality heat from GT in system 1 and system 2 is supplied to anode and cathode preheaters, respectively, whereas in system 3, the heat is simultaneously split into both preheaters. Effects of air flow rate, fuel utilization factor (Uf), and steam to carbon ratio (S/C) are also investigated. It is found that the best system design can be achieved by effectively utilizing GT exhaust heat for both electrode preheaters, as indicated in system 3. The maximum energy system efficiency obtained among the hybrid systems analyzed in this study is 71% with total exergy destruction of 686.7 kW. When fueled by methane, the hybrid system can achieve energy and exergy efficiencies of 71% and 77%, respectively, with 0.85 Uf. On the other hand, propane-fueled systems can achieve energy and exergy efficiencies of 68% and 75%, respectively. As S/C increases from 2 to 7, system efficiency decreases from 71% to 50%. When system 3 is fueled with butane or propane, system efficiency is only 3% lower than that fueled by methane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.