Abstract

Supercritical water gasification (SCWG) is a potential clean technology for utilizing solid fuel or waste without producing gaseous pollution. Efficient energy integration and recovery strategies play an essential role in the endothermal gasification process. Previous approaches have only focused on the heat source or heat transfer with very little attention to the utilization of the abundant supercritical water in the product gas. This paper proposes an innovative series design for heat integration in the SCWG system while taking the gasification process into account. Notably, the first-stage oxidized hot fluid containing abundant water is directly utilized as the gasification agent for the second-stage gasification reactor. The thermodynamic analysis shows that the cold gas and exergy efficiency in the two-stage series system is 17.4% and 15.0% higher than in the previous single-stage gasification reactor. The sensitivity analysis illustrates that increasing series stages and feedstock concentration while decreasing oxidation proportion and the agent-slurry ratio can improve the overall system efficiency by decreasing the demand for oxygen, power consumption, and heat transfer rate. The series design should offer an innovative and practical approach for the heat supply in the industrial SCWG plant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.