Abstract

Thermal shock resistance ceramic materials must have a high degree of sintering to ensure the required mechanical strength, erosion resistance, and resistance to high-temperature oxidation. However, the search for effective ways to achieve a high degree of sintering of ceramic materials based on the SrO–Al2O3–SiO2 system at low temperatures requires a large amount of experimental research. The aim of this work is to analyze thermodynamically the reactions of strontium-anorthite phase formation at the points of triple eutectics of the SrO–Al2O3–SiO2 system under low-temperature firing conditions. The eutectic points were selected in the region of strontium anorthite crystallization and had a temperature not exceeding 14000C. It has been established that in the case of compliance with the stoichiometric ratio, the final product of the interaction of the components of eutectic glasses S-1 and S-2 with the charging components is the strontium anorthite phase. The most probable is the formation of strontium anorthite in the interaction of eutectic glass components with Al2O32SiO2, which is a product of kaolinite dehydration (Al2O32SiO22H2O). It has been found that the compounds SrOSiO2 and 2SrOAl2O3SiO2 are most active in the interaction with the charging components in the direction of formation of the strontium anorthite phase than SiO2 tridymite. As a result, the sintering of strontium-anorthite compositions at a temperature of 9000C causes a significant increase in the content of the crystalline phase of strontium anorthite. The determined patterns allow making a reasonable choice of glass in the SrO–Al2O3–SiO2 system for the further manufacture of low-temperature strontium-anorthite ceramics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.