Abstract

The Air-Turborocket (ATR) engine can work at Mach 0โˆผ4 or even higher speed, which is considered one of the best low Mach number propulsion systems for reusable hypersonic vehicles. However, because the hydrocarbon-fuelled ATR engine uses a fuel-rich gas generator, the combustion product contains a large amount of C(gr) that can cause coking in the turbine in a few minutes. To solve this problem, an ATR engine cycle with a complete-combustion gas generator (ATR-CCGG) was proposed. The performance of this cycle has been analysed through the thermodynamic model, and the influence factors and the sensitivity study of the cycle performance have been investigated. The results show that when the equivalence ratio is 1, the cycle can get more than 700 s of specific impulse and 1000 m/s of specific thrust at supersonic speed. Although the performance at subsonic speed is lower than that of the LOX/Kerosene ATR engine, the gas generator without C(gr) can ensure the engine to work for hours without coking in the turbine at different Mach numbers, which can be used in reusable hypersonic vehicles or single-stage-to-orbit missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.