Abstract

Shape memory alloys (SMA) usually exhibit shifts in the transformation temperatures with increasing the number of thermal cycles. These shifts result from an increased stability of the martensite during cycling and have an important role in the functionality of the material. The structural reasons for these changes are not fully understood and are investigated here by a thermodynamic approach. The variation in the transformation temperatures and in the chemical and non-chemical energy terms of the total energy involved in the transformation of a Cu–Al–Ni–Mn SMA was studied. Powder of this alloy was produced by gas atomization with size in the range of 32–45μm and subsequently heat-treated at 180°C, 250°C and 300°C during different times. The as-cast and heat-treated samples were investigated by differential scanning calorimetry, X-ray diffraction and scanning and transmission electron microscopy. Only a single martensitic β′ phase was formed at room temperature. It was observed an increase in the austenitic start transformation temperature (As) as well as in the austenitic finish transformation temperature (Af) with increasing the annealing time and temperature. The shift in the transformation temperatures to higher values is attributed to a decrease of the latent heat of transformation and non-chemical energy term, caused by changes in the structural order of the martensite. This study shows that the variation of the transformation temperatures is strongly linked to the total energy components, which can give important information about the stability of the alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call