Abstract

The synthesis of zinc oxide and chalcogenides from aqueous solution is analyzed from a thermodynamic point of view. The study is intended to explain the results of recipes normally used for the growth of thin films of zinc oxide and chalcogenides from chemical solutions. Different reaction possibilities are compared in a solution of zinc, ammonia as complexant, chalcogenide anions, and hydrazine. The composition of the solution is analyzed by means of thermodynamic diagrams, as a function of pH, ammonia concentration, and redox potential. The reactivity in the solution is discussed, and free energy changes are compared as a function of pH for the different possible reactions. It arises that ZnO growth by an electroless−chemical process is the most favored reaction in nondeaerated solutions. This reaction consists of the reduction of naturally dissolved oxygen by the chalcogenide anion, or other added reducer (hydrazine), followed by chemical formation of ZnO. Zinc chalcogenides appear to be metastable pha...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call