Abstract
Supercritical CO2 Brayton cycle has the advantages of high thermoelectric conversion efficiency and compact structure. However, the high ambient temperature in the desert environment would reduce the cycle thermal efficiency. In this paper, three additive gases were mixed with CO2 to reduce the effect of ambient temperature on cycle efficiency. The thermodynamic analysis method based on the optimal split ratio was applied to evaluate the potential of CO2-based binary mixtures in the SPT systems application for the first time. Meanwhile, the impact of critical cycle parameters on system performance was analyzed and the internal connection of the phenomenon was investigated by discussing the exergy loss of each component under typical operating conditions. The results show that the optimal split ratio decreases with the increase of main compressor inlet temperature and turbine inlet pressure. The change of turbine inlet temperature has little effect on the optimal split ratio. CO2-propane has the potential for practical application because the pressure ratio has little effect on the optimal split ratio. Moreover, it is found that the thermal and exergy efficiencies of CO2-propane are increased by 2.34% and 1.51% compared with CO2 under typical operating conditions based on genetic algorithm optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.