Abstract
Direct energy conversion devices like fuel cells, photo-voltaic cells, etc., are gaining prominence due to their high operating efficiencies. Further, hybrid systems consisting of fuel cells combined with bottoming power cycles are also receiving attention due to their inherent advantages. In the present study, energy analysis is conducted for a composite system consisting of a solid oxide fuel cell (SOFC), reheat and regenerative Braysson cycle, and steam generators. The study aims to develop a mathematical model and simulate the integrated system using the MATLAB environment. The Braysson cycle's design characteristics are examined in the model to see how they might affect the combined system's energy performance. The work output, first law efficiency, energy utilization factor, etc., are estimated and thoroughly analyzed using parametrical analysis. The fuel cell power output to Braysson maximum power ratio ranges from 17.33 to 2.36, for TIT’s ranging from 400 °C to 900 °C, thus as the operating temperature of the Braysson system increases, the power generated by it reaches values closer to that of the fuel cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.