Abstract
Isothermal titration calorimetry is a highly sensitive and powerful technique for the study of molecular interactions. This method can be applied universally for studying the interaction between moleculeAbstracts, molecular assembles and ions as it measures the heat changes resulting from such interactions and does not need any probe molecule/moiety to be incorporated into the system under investigation. This method has been applied quite extensively to investigate the interaction of proteins with other biomolecules such as small ligands, other proteins, nucleic acids, lipid membranes as well as to study the interaction of antibodies, drugs, metal ions and nanoparticles with target proteins or antigens, nucleic acids, and membranes. In this chapter, we describe the application of ITC for the investigation of thermodynamics of protein-lipid interaction. A number of important parameters such as enthalpy of binding (ΔH), entropy of binding (ΔS), association constant (Ka), binding stoichiometry (n) and free energy of binding (ΔG) can be obtained from a single calorimetric titration, providing a complete thermodynamic characterization of the interaction. The method is described in detail taking the major protein of the bovine seminal plasma, PDC-109, which exhibits a high preference for interaction with choline-containing lipids, as an example. The method can be applied to investigate thermodynamicparameters associated with the interaction of other soluble proteins with lipid membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.