Abstract

The authors analyze small-angle neutron scattering (SANS) data of sodium dodecyl sulfate (SDS) and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) ionic micellar solutions taking into account the effect of size polydispersity on the particle form factor. The intermicellar structure factor is computed by a generalized one-component macroion theory (GOCM) assuming a constant fractional charge. The model fittings to SANS data for different concentrations allow us to extract the free energy parameters of micelle formation and growth, the size distribution function of micelles, and the minimum micelle size which is consistent with the fully stretched hydrocarbon tail lengths of the surfactant molecules. The critical micellar concentration (cmc) is predicted from the free energy parameters correctly. Combining the free energy of micelle formation with the double-layer free energy around the averaged micellar surface calculated by the nonlinear Poisson-Boltzmann equation, they obtain the hydrophobic free energy of micellization which is in quantitative agreement with the literature value. These analyses confirm the applicability of the ladder model of micellar growth in salt free ionic micellar solutions at moderate concentrations. The degree of polydispersity in size is about 11% for 2% SDS solution at 40/degrees/C and 17% for 1% AOT at 22.6/degrees/C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.