Abstract

The vapour absorption-resorption refrigeration system (VARS) can supply cooling and heating at lower operating pressure than the conventional vapour absorption refrigeration system. In this study, three novel configurations of the ejector-assisted ammonia-water VARS are proposed in which an ejector is integrated to replace the throttle valve. The three novel configurations are classified on the basis of the secondary flow to the ejector and are termed as the first configuration (C1), the second configuration (C2), and the third configuration (C3). The coefficient of performance (COP) of the proposed configurations is calculated and compared with that of the conventional VARS. For a constant high-pressure, the low-pressure is varied in the feasible range to demonstrate the effect of different pressure ratios on the COP, mass fraction gradients, generator circulation ratio, and heat inputs. In order to study the effect of operating parameters, the COP of the proposed novel configurations is evaluated at different desorber and generator operating temperatures. The results indicate that the proposed novel configurations have higher COP than the conventional VARS and the configuration C3 has the highest COP among the proposed configurations. At a resorber pressure of 6 bar, the configuration C3 achieves 15% higher COP than the conventional VARS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.