Abstract

Based on the combination of the glycerol aqueous-phase reforming (APR) and catalytic hydrogenation of glycerol, a novel reaction system of liquid phase in situ hydrogenation of glycerol for the synthesis of 1,3-propanediol is proposed, in which hydrogen is produced from glycerol aqueous-phase reforming in the same reactor. In this new system, the glycerol is the raw material of the aqueous-phase reforming reaction; the hydrogen generated from the APR of glycerol can be quickly transformed to the in situ hydrogenation of glycerol to produce 1,3-propanediol, which can improve the selectivity of hydrogen for the APR process of glycerol. Moreover, thermodynamic calculation of the coupling processes was carried out, and standard molar enthalpies and equilibrium constants of foregoing reactions were obtained. The above calculation results indicate that the combination process is feasible for 1,3-propanediol synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.