Abstract

Several studies using radioligand binding assays, have shown that measurement of thermodynamic parameters can allow discrimination of agonists and antagonists (Weiland et al., 1979; Borea et al., 1996a). Here we investigate whether agonists and antagonists can be thermodynamically discriminated at CCK(2) receptors in rat cerebral cortex. The pK(L) of [(3)H]-JB93182 in rat cerebral cortex membranes was determined at 4, 12, 21 and 37 degrees C in 50 mM Tris-HCl buffer (buffer B pH 6.96; containing 0.089 mM bacitracin). pK(I) values of ligands of diverse chemical structure and with differing intrinsic activity (alpha), as defined by the lumen-perfused rat and mouse stomach bioassays, were determined in buffer B at 4, 12, 21 and 37 degrees C. [(3)H]-JB93182 labelled a homogeneous population of receptors in rat cerebral cortex at 4, 12, 21 and 37 degrees C and the pK(L) and B(max) were not altered by incubation temperature. [(3)H]-JB93182 binding reached equilibrium after 10, 50, 90 and 220 min at 37, 21, 12 and 4 degrees C, respectively. pK(I) values for R-L-365,260, R-L-740,093, YM220, PD134,308 and JB95008 were higher at 4 degrees C than at 37 degrees C. There was no effect of temperature on pK(I) values for pentagastrin, CCK-8S, S-L-365,260, YM022, PD140,376 and JB93242. CCK(2) receptor agonists and antagonists at rat CCK(2) receptors cannot be discriminated by thermodynamic analysis using [(3)H]-JB93182 as the radioligand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call