Abstract

Kex2 is the prototype of a large family of eukaryotic subtilisin-related proprotein-processing proteases that cleave at sites containing pairs of basic residues. Here, we studied the effects of KCl on the individual rate constants of association, dissociation, acylation and deacylation and determined the thermodynamic parameters at each step of the Kex2 reaction. Potassium bound Kex2 with KD=20.3mM. The order in which potassium entered the reaction system modified the effect of activation or inhibition, which depended on the size of the substrate. A possible allosteric potassium binding site at the S6 subsite was involved in activation, and a distant site located between the catalytic domain and the P-domain was involved in inhibition. Potassium decreased the energetic barriers of almost all steps of catalysis. The acylation of Ac-PMYKR-AMC in the absence of potassium was the rate-limiting step. Therefore, for substrates containing a P1-Arg, the deacylation step is not necessarily the rate-limiting event, and other residues at the P′ positions may participate in controlling the acylation and deacylation steps. Thus, it is reasonable to conclude that potassium is involved in the processing of the α-mating factor that promotes Ca2+ mobilization by activating a high-affinity Ca2+-influx system to increase the cytosolic [Ca2+], resulting in the activation of channels that are essential for the survival of Saccharomyces cerevisiae cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.