Abstract
This paper presents thermodynamic analysis of hydrogen production by steam reforming. The analysis treats the chemistry at two levels: a global species balance assuming complete reaction and solution of the equilibrium composition at the specified reformer temperature. The global reaction allows for an energy balance that leads to analytical expressions for the thermal efficiency. We use this to determine the maximum efficiency, and to distinguish between various definitions of efficiency. To obtain a more realistic estimate of the efficiency, the chemical equilibrium solution is combined with a system energy balance, which compares the energy required to vaporize and heat the fuel–steam mixture to the reformer temperature with the heat available from combusting the residual fuels in the reformate stream. The equilibrium solutions are compared to experimental measurements of the species and thermal efficiency of reforming diesel fuel, obtained with prototype compact steam reformers. The observed efficiency is significantly lower than the equilibrium prediction, indicating that both incomplete reaction and heat transfer losses reduce the performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.