Abstract

Clathrate hydrates (hydrates) have a larger dissociation heat than an evaporation heat of the working fluid of conventional refrigeration systems. This property can be applied to a novel refrigeration system. In this study, theoretical performance analysis of the refrigeration system utilizing hydrates as its working medium was conducted. We modeled the thermodynamic cycle of the hydrate-based refrigeration system composed of following processes: adiabatic compression, hydrate formation at high temperature, adiabatic expansion, and hydrate dissociation at low temperature. Based on the thermodynamic cycle, the coefficient of performance (COP) of the hydrate cycle was theoretically formulated with thermodynamic state functions of the working medium. Using the formula, COP was calculated on the three hydrate forming systems including HFC-32 + cyclopentane (CP) + water, Kr + CP + water, and HFC-41 + CP + water. The analysis based on the calculated results revealed that the dissociation heat of hydrates and the enthalpy change of guest gas were dominant factors to COP and polyatomic molecules would be appropriate for guest gas of hydrates. The maximum COP values on the hydrate cycle were comparable to those of the reversed Rankine cycle. The hydrate-based refrigeration system outperformed conventional refrigeration systems in terms of safety and environmental-friendliness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.