Abstract

AbstractA thermodynamic analysis of steam reforming of glycerol using the stoichiometric method has been performed. Since the aim of this work is to study product distribution and coke formation in equilibrium, two different models have been proposed: (a) CO as primary product and (b) CO2 as primary product. Moreover, substantial information regarding the behavior of the different reactions could be acquired. Product distribution at equilibrium has been investigated in a broad range of conditions: temperature (600–1200 K), water‐to‐glycerol feed molar ratio (0:1–10:1), and pressure (1–9 atm). Glycerol conversion results completely over the whole range of the mentioned conditions. Consequently, product distribution at equilibrium is determined by water gas shift (WGS) and methanation or methane steam reforming reactions. Finally, high temperatures and a high water‐to‐glycerol feed molar ratio favor hydrogen production and decrease both methane and coke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.