Abstract
Thermodynamic properties of glycerin steam reforming have been studied with the method of Gibbs free energy minimization for hydrogen and/or synthesis gas production. Equilibrium compositions including the coke-formed and coke-free regions were determined as a function of water/glycerin molar ratios (1:1−12:1) and reforming temperatures (550−1200 K) at different pressures (1−50 atm). Optimum conditions for hydrogen production are temperatures between 925 and 975 K and water/glycerin ratios of 9−12 at atmospheric pressure, whereas temperatures above 1035 K and water/glycerin ratios between 2 and 3 at 20−50 atm are suitable for the production of synthesis gas that favors both methanol synthesis and low-temperature Fischer−Tropsch synthesis. However, synthesis gas obtained from glycerin steam reforming is not feasible for direct use in high-temperature Fischer−Tropsch synthesis. Under these optimum conditions, carbon formation can be thermodynamically inhibited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.