Abstract
We put forward a thermodynamic approach for analyzing fatigue failure in a composite laminate. We show that fatigue is an irreversible progression of increasing entropy that accumulates until it reaches a critical value called the fracture fatigue entropy (FFE) at the onset of failure. Extensive series of fatigue tests are carried out that involve load-controlled tension-tension, and displacement controlled fully-reversed bending fatigue with three different stress ratios as well as constant- and variable-loading. The role of hysteresis energy in the entropy generation is investigated. FFE values are calculated based the experimental data obtained for temperature and hysteresis energy of a woven Glass/Epoxy (G10/FR4) laminate. The concept of tallying entropy accumulation and the use of FFE are useful for determining the fatigue life of composite laminates undergoing cyclic loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.