Abstract

Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were performed upon wide ranges of pressure (1–25 atm), temperature (600–1300 K), carbon dioxide to methane ratio (0–2) and oxygen to methane ratio (0–1). The thermodynamic results were compared with the results obtained over a Ru supported catalyst. The results revealed that by increasing the reaction pressure methane conversion decreased. Also it was found that the atmospheric pressure is the preferable pressure for both dry reforming and partial oxidation of methane and increasing the temperature caused increases in both activity of carbon and conversion of methane. The results clearly showed that the addition of O2 to the feed mixture could lead to a reduction of carbon deposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call