Abstract

Liquid desiccant systems are emerging as promising alternatives to achieve humidity control in a variety of applications with high latent loads and low humidity requirements. Their advantage lies on their ability to handle the latent load without super-cooling and then reheating the air, as happens in a conventional compression-type air conditioning system. This paper presents the results from a study of the performance of a counter flow internally heated liquid desiccant regenerator. A tubular heat exchanger is proposed as the internally heated element of the regenerator and water as the heating fluid. The desiccant solution is sprayed into the internally heated regenerator from the top and flows down by gravity. At the same time, ambient air is blown from the bottom, counter-flowing with the desiccant solution. The desiccant is in direct contact with the air, allowing for heat and mass transfer. The water, flowing inside the tubes of the regenerator, provides the necessary heat for regeneration. A heat and mass transfer theoretical model has been developed, based on the RungeKutta fixed step method, to predict the performance of the device under various operating conditions. Experimental data from previous literature have been used to validate the model. Excellent agreement has been found between experimental tests and the theoretical model, with the deviation not exceeding ±6.1%. Following the validation of the mathematical model, the dominating effects on the desorption process have been discussed in detail. The three most commonly used liquid desiccant solutions (LiCl, LiBr, CaCl2) and two different flows (DDU: water downward – desiccant downward – air upward, UDU: water upward – desiccant downward – air upward) have been also evaluated against each other. Considering the flow analysis, the type of flow does not affect the regeneration capacity as much as the type of the desiccant solution. It has been concluded that high regeneration rate can be achieved under DDU flow (water downward – desiccant downward – air upward), low solution concentration, high air inlet temperature, high solution inlet temperature, low air inlet humidity ratio and CaCl2 as the desiccant solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call