Abstract

Aircraft and precooled engine efficient matching work is a key issue in the thermal cycle design of precooled engines, to solve this problem, an aircraft/precooled turbine engine integrated design method considering the fuel precooling impact mechanism is newly proposed. The impact of n-decane, ammonia, and hydrogen fuel precooling on aircraft design parameters and engine thrust requirements is revealed. Furthermore, a parameter optimal design method for fuel precooled engine is carried out to satisfy the multi-objective performance requirements of high specific thrust, low fuel consumption, high exergy efficiency, and low weight. The simulation results show that the n-decane fuel precooled engine reduces the takeoff weight of the aircraft by 4.23% and the fuel load by 11.6%, which has a better comprehensive performance than that of ammonia and hydrogen. Ammonia fuel has the maximum precooling heat sink and performance improvement space. After multi-objective optimization, it increases the maximum specific thrust by 7.3%, reduces fuel consumption by 2.2%, and improves the engine exergy efficiency by 2.7%, with only a 1.3% increase in rotating component weight. Ammonia and n-decane dual fuel precooling can achieve complementary advantages of high combustion heat value and high precooling heat sink, making it an ideal precooled engine scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call