Abstract

A novel combined cooling and power (CCP) system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat was presented. The proposed system consists of two subsystems, absorption refrigeration/power cycle (ARP) subsystem and LNG refrigeration/power cycle (LRP) subsystem. The Rankine cycle and absorption refrigeration cycle were connected in series to form the ARP and they showed mutual enhancement in the integration. The operating performance of the system was calculated and analyzed. And the effects of generator pressure and circulation ratio on the performance were analyzed. Furthermore, a typical application case, in which the proposed system is integrated into the gas-steam combined cycle system as an LNG pre-processing and power enhancement unit, had been studied. The results showed that the net power generation efficiency, comprehensive energy utilization ratio, and exergy efficiency of the proposed CCP system reached 32.70%, 81.63%, and 35.14%, respectively. The feasibility and performance of the integrated system with combined cycle gas turbine were proved. And suggestions for the parameter design were presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call