Abstract

Cold energy during the LNG regasification process is usually applied for power generation, but the electricity demand varies with the time. Therefore, a thought that transforming electrical energy into hydrogen energy by PEM electrolyzer is put forward to adjust the adaptability of power output to electricity demand. This paper proposes a new double-pressure condensation Rankine cycle integrated with PEM electrolyzer for hydrogen production. In this system, seawater is used as the heat source, and binary mixed working fluids are applied. Meanwhile, multi-stream heat exchanger is introduced to improve the irreversibility of heat transfer between LNG and working fluid. The key system parameters, including seawater temperature, the first-stage condensation temperature, the second-stage condensation temperature, and outlet temperature of LNG, are studied to clarify their effects on net power generation, hydrogen production rate and energy efficiency. Furthermore, the hydrogen production rate is as the objective function, these parameters are optimized by genetic algorithm. Results show that seawater temperature has positive impact on the net power output and hydrogen production rate. The first-stage condensation temperature, the second-stage condensation temperature, and outlet temperature of LNG have diverse effects on the system performance. Under the optimal working conditions, when the LNG regasification pressure are 600, 2500, 3000 and 7000 kPa, the increasing rate for optimized net power output, hydrogen production rate and energy efficiency are more than 11.68%, 11.67% and 8.88%, respectively. The cost of hydrogen production with the proposed system varies from 1.93 $/kg H2 to 2.88 $/kg H2 when LNG regasification pressure changes from 600 kPa to 7000 kPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call