Abstract

A long-range interacting Fermi chain placed in the uniform and the staggered magnetic field is studied via the micro-canonical approach. The relation between the entropy and the energy of the system is obtained by counting the number of microscopic states. We find that this system is non-ergodic and can exhibit first-order phase transition, second-order phase transition, or both. The microcanonical ensemble predicts negative specific heat regions and temperature jumps. Moreover, the global phase diagram of the system is constructed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.