Abstract
The thermodynamics of a monoclonal antibody (mAb)-peptide interaction have been characterized by isothermal titration microcalorimetry. GCC:B10 mAb, generated against human guanylyl cyclase C, a membrane-associated receptor and a potential marker for metastatic colon cancer, recognizes the cognate peptide epitope HIPPENIFPLE and its two contiguous mimotopes, HIPPEN and ENIFPLE, specifically and reversibly. The exothermic binding reactions between 6.4 and 42 degrees C are driven by dominant favorable enthalpic contributions between 20 and 42 degrees C, with a large negative heat capacity (DeltaC(p)) of -421 +/- 27 cal mol(-1) K(-1). The unfavorable negative value of entropy (DeltaS(b)(0)) at 25 degrees C, an unusual feature among protein-protein interactions, becomes a positive one below an inversion temperature of 20.5 degrees C. Enthalpy-entropy compensation due to solvent reorganization accounts for an essentially unchanged free energy of interaction (DeltaDeltaG(b)(0) congruent with 0). The role of water molecules in the recognition process was tested by coupling an osmotic stress technique with isothermal titration microcalorimetry. The results provide direct and compelling evidence that GCC:B10 mAb recognizes the peptides HIPPENIFPLE, HIPPEN, and ENIFPLE differentially, with a concomitant release of variable and nonadditive numbers of water molecules (15, 7, and 3, respectively) from the vicinity of the binding site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.