Abstract

In this paper we undertake a comprehensive study to meet the building heating/cooling and power demand through a sustainable operation. We integrated polymer electrolyte membrane fuel cell (PEMFC) system and triple effect absorption refrigeration system (TEARS) for space cooling/heating and water heating applications in buildings. The analysis is carried out to observe the effects of different operating conditions on the efficiency of the fuel cell, output of the fuel cell and TEARS, and the utilization factor of the system. It is found that the efficiency, the utilization factor, and change in temperature of hot water increases from 36% to 48.8%, 49% to 86%, and 14 K to 23 K, respectively when the temperature of the cell is increased for different cooling loads and membrane thicknesses. In addition, the increase in membrane thickness affected the efficiency, the utilization factor, and change in temperature of hot water in a negative way and they were found to be decreasing from 47.3% to 42%, 85% to 49%, and 23 K to 12 K, respectively for different cooling loads. The water supplied to the house is obtained from a geothermal water source which makes the system more sustainable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call