Abstract

Herein, we reported an innovative thermodynamic allosteric switch-actuated 3D DNA nanomachine for selective, sensitive, and accurate electrochemical (EC)/fluorescent (FL) dual-mode biosensing of a microphthalmia-associated transcription factor (MITF). The thermodynamic allosteric switch was ingeniously customized as a hairpin probe (HP) that was in dynamic equilibrium but rapidly interconverting conformations. At the "inactive state", the MITF-binding region and the switch part were "sequestered". Upon the introduction of MITF, an MITF-HP complex promptly formed, and the equilibrium of HP thermodynamically inclined from the "inactive state" toward the "active state" conformation. Immediately, the exposed switch on HP effectively actuated the 3D DNA nanomachine and synchronously produced the restriction site for Nb.BbvCI nicking endonuclease. After the autonomous conveying of the 3D DNA nanomachine by means of the high-efficiency circularly nicking endonuclease signal amplification (NESA), not only was MB-S1 in the supernatant used for FL measurements but also MB-SP/MNs/S2 in the precipitate was adapted for EC analysis, significantly improving the utilization of output products derived from the 3D DNA nanomachine. Accordingly, benefiting from the efficient DNA nanomachine signal amplification manner and the self-calibration function of a dual-mode bioassay, the constructed biosensor exhibits superior sensitivity and accuracy for MITF determination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.