Abstract
When creating MHD (Magnetohydrodynamic) alternating current generators using liquid-metal working body, the latter is accelerated by piston method, in which the working body is a periodic structure of alternating zones of liquid metal (pistons) and zones of compressed gas, the latter is accelerated liquid-metal pistons. This raises the form stability problem for liquid metal pistons. Viscous frictional forces generated inside the pistons lead to the destruction of the pistons and significantly reduce the efficiency of the MHD unit. One solution is to use gas-permeable walls of the channels of MHD-generators, through the pores of which gas is injected. In this way, the piston flow is isolated from the side surface of the channel by the penetrating gas in the channel cavity. As a result, friction losses are drastically reduced. At the final values of the One solution is to use gas-permeable walls of the channels of MHD-generators, through the pores of which gas is injection coefficients, (? ≥ 0.03)the friction practically disappears. With the channel length determined by the coordinate of the maximum piston speed, 92% of the current marginal efficiency values can be achieved. The maximum efficiency of the runaway channel can be achieved by selecting the optimal value of the air injection coefficient. The operation of the devices commutating the injected gas must ensure that there is an injection in an area that is no more than twice the length of the piston.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.