Abstract

Thermodiffusion in liquids (the Soret effect) has several unusual properties. In particular, transport can occur with or against a temperature gradient depending on the case. Numerous empirical correlations have been proposed with mixed success or range of applicability. Here, we show that physicochemical mechanics, derived from the Smoluchowski equation as a description of diffusive transport phenomena, is in accord with the experimental and simulated thermodiffusion data from colloidal beads and biomacromolecules to ionic solutions and ultracold fluid mixtures. It yields a simple formula for the Soret coefficient ST based on the reference molar entropy including non-ideality. Hydrodynamic and local non-equilibrium effects are discussed but not included as these are apparently not a major contribution for the wide range of solutes under the near-equilibrium experimental conditions considered here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.