Abstract
A thermophilic, marine, anaerobic, chemolithoautotrophic, sulfate-reducing bacterium, strain CIR29812T, was isolated from a deep-sea hydrothermal vent site at the Kairei vent field on the Central Indian Ridge. Cells were Gram-negative motile rods that did not form spores. The temperature range for growth was 55-80 degrees C, with an optimum at 70 degrees C. The NaCl concentration range for growth was 10-35 g l(-1), with an optimum at 25 g l(-1). The pH range for growth was 6-6.7, with an optimum at approximately pH 6.25. H2 and CO2 were the only electron donor and carbon source found to support growth of the strain. However, several organic compounds were stimulatory for growth. Sulfate was used as electron acceptor, whereas elemental sulfur, thiosulfate, sulfite, cystine, nitrate and fumarate were not. No fermentative growth was observed with malate, pyruvate or lactate. The phenotypic characteristics of strain CIR29812T were similar to those of Thermodesulfobacterium hydrogeniphilum, a recently described thermophilic, chemolithoautotrophic sulfate-reducer. However, phylogenetic analyses of the 16S rRNA gene sequences showed that the new isolate was distantly related to members of the family Thermodesulfobacteriaceae (similarity values of less than 90%). The chemotaxonomic data (fatty acids and polar lipids composition) also indicated that strain CIR29812T could be distinguished from Thermodesulfobacterium commune, the type species of the type genus of the family Thermodesulfobacteriaceae. Finally, the G+C content of the genomic DNA of strain CIR29812T (46.0 mol%) was not in the range of values obtained for members of this family. On the basis of phenotypic, chemotaxonomic and genomic features, it is proposed that strain CIR29812T represents a novel species of a new genus, Thermodesulfatator, of which Thermodesulfatator indicus is the type species. The type strain is CIR29812T (=DSM 15286T=JCM 11887T).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Systematic and Evolutionary Microbiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.