Abstract

The timing of Tibetan plateau development remains elusive, despite its importance for evaluating models of continental lithosphere deformation and associated changes in surface elevation and climate. We present new thermochronologic data [biotite and K-feldspar 40 Ar/ 39 Ar, apatite fi ssion track, and apatite (U-Th)/He] from the central Tibetan plateau (Lhasa and Qiangtang terranes). The data indicate that over large regions, rocks underwent rapid to moderate cooling and exhumation during Cretaceous to Eocene time. This was coeval with >50% upper crustal shortening, suggesting substantial crustal thickening and surface elevation gain. Thermal modeling of combined thermochronometers requires exhumation of most samples to depths of <3 km between 85 and 45 Ma, followed by a decrease in erosional exhumation rate to low values of <0.05 mm/yr. The thermochronological results, when interpreted in the context of the deformation and paleoaltimetric history, are best explained by a scenario of plateau growth that began locally in central Tibet during the Late Cretaceous and expanded to encompass most of central Tibet by 45 Ma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.