Abstract

Metal ion complexes of semiquinone radical anions exhibit different types of thermochromism depending on metal ions and quinones. Metal ion complexes of 1,10-phenanthroline-5,6-dione radical anion (PTQ(.-)) produced by the electron-transfer reduction of PTQ by 1,1'-dimethylferrocene (Me(2)Fc) in the presence of metal ions (Mg(2+) and Sc(3+)) exhibit the color change depending on temperature, accompanied by the concomitant change in the ESR signal intensity. In the case of Mg(2+), electron transfer from Me(2)Fc to PTQ is in equilibrium, when the concentration of the PTQ(.-)-Mg(2+) complex (lambda(max) = 486 nm) increases with increasing temperature because of the positive enthalpy for the electron-transfer equilibrium. In contrast to the case of Mg(2+), electron transfer from Me(2)Fc to PTQ is complete in the presence of Sc(3+), which is a much stronger Lewis acid than Mg(2+), to produce the PTQ(.-)-Sc(3+) complex (lambda(max) = 631 nm). This complex is in disproportionation equilibrium and the concentration of the PTQ(.-)-Sc(3+) complex increases with decreasing temperature because of the negative enthalpy for the proportionation direction, resulting in the remarkable color change in the visible region. On the other hand, the p-benzosemiquinone radical anion (Q(.-)) forms a 2:2 pi-dimer radical anion complex [Q(.-)-(Sc(3+))(2)-Q] with Q and Sc(3+) ions at 298 K (yellow color), which is converted to a 2:3 pi-dimer radical anion complex [Q(.-)-(Sc(3+))(3)-Q] with a strong absorption band at lambda(max) = 604 nm (blue color) when the temperature is lowered to 203 K. The change in the number of binding Sc(3+) ions depending on temperature also results in the remarkable color change, associated with the change in the ESR spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.