Abstract

Based on the nanocomposite structure and doping modification, we have studied the preparation technology of high performance nanocomposite thin film and its characterization methods. The W-doped VO2/ZnO nanocomposite thin films are prepared successfully on SiO2 substrates by the three-step method. The structure and morphology of the W-doped VO2/ZnO/SiO2 films are analyzed by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscope. Results show that the films are mainly composed of VO2 and high valence cation W6+ replacing the V ion in the W-doped VO2/ZnO/SiO2 films. It is found that the flake nanocrystallines resemble a flower in shape, and its size and orientational growth are reduced. The thermochromic properties of W-doped VO2/ZnO films are measured and compared with the single-layer W-doped VO2 films on SiO2 substrates with the same thickness. The variation of infrared transmittance of the W-doped VO2/ZnO/SiO2 nanocomposite film is increased nearly two times, the phase transition temperature reduced approximately to 39 °C, and the width of the thermal hysteresis loop is about 6 °C. The W-doped VO2/ZnO/SiO2 nanocomposite film has a high infrared modulation ability, a lower phase transition temperature, and a narrower thermal hysteresis loop. Thus the potential application of this nanocomposite film is significantly improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.