Abstract

The enthalpies of formation for the compounds (RE3+)PO4, (where RE = Sc, Y, La–Nd, Sm–Lu) were determined by oxide-melt solution calorimetry. Calorimetric measurements were performed in a Calvet-type twin microcalorimeter in sodium molybdate (3Na2O · 4MoO3) and lead borate (2PbO · 2B2O3) solvents at 975 K. The experiments were carried out using both powdered single crystals grown by a flux technique and powders synthesized by precipitation. Formation enthalpies were derived from the drop-solution enthalpies for (RE)PO4, RE oxides, and P2O5. Enthalpies of formation for the (RE)PO4 compounds with respect to the oxides at 298 K become more negative with increasing RE3+ ionic radius; i.e., in going from ScPO4 (−209.8 ± 1.0 kJ/mol), to LuPO4 (−263.9 ± 1.9 kJ/mol), to LaPO4 (−321.4 ± 1.6 kJ/mol). From structural considerations, a similar trend is expected for the isostructural RE vanadates and arsenates, as well as for the tetravalent actinide orthosilicates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.