Abstract

We introduce temperature-controlled nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) and demonstrate its use to study thermochemistry of protein-DNA interactions. Being a homogeneous kinetic method, temperature-controlled NECEEM uniquely allows finding temperature dependencies of equilibrium and kinetic parameters of complex formation without the immobilization of the interacting molecules on the surface of a solid substrate. In this work, we applied temperature-controlled NECEEM to study the thermochemistry of two protein-DNA pairs: (i) Taq DNA polymerase with its DNA aptamer and (ii) E. coli single-stranded DNA binding protein with a 20-base-long single-stranded DNA. We determined temperature dependencies of three parameters: the equilibrium binding constant (Kb), the rate constant of complex dissociation (k(off)), and the rate constant of complex formation (k(on)). The Kb(T) functions for both protein-DNA pairs had phase-transition-like points suggesting temperature-dependent conformational changes in structures of the interacting macromolecules. Temperature dependencies of k(on) and k(off) provided insights into how the conformational changes affected two opposite processes: binding and dissociation. Finally, thermodynamic parameters, DeltaH and DeltaS, for complex formation were found for different conformations. With its unique features and potential applicability to other macromolecular interactions, temperature-controlled NECEEM establishes a valuable addition to the arsenal of analytical methods used to study dynamic molecular complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.