Abstract

The standard ( p ∘ = 0.1 MPa) molar energies of combustion in oxygen, at T = 298.15 K, of 5-, 6- and 7-methoxy-α-tetralone were measured by static bomb calorimetry. The values of the standard molar enthalpies of sublimation were obtained by Calvet microcalorimetry and corrected to T = 298.15 K. Combining these results, the standard molar enthalpies of formation of the compounds, in the gas phase, at T = 298.15 K, have been calculated, 5-methoxy-α-tetralone -(244.8 ± 1.9) kJ · mol −1, 6-methoxy-α-tetralone −(243.0 ± 2.8) kJ · mol −1 and 7-methoxy-α-tetralone −(242.3 ± 2.6) kJ · mol −1. Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange–correlation energy functional with extended basis sets and more accurate correlated computational techniques of the MCCM/3 suite have been performed for the compounds. The agreement between experiment and theory gives confidence to estimate the enthalpy of formation of 8-methoxy-α-tetralone. Similar calculations were done for the 5-, 6-, 7- and 8-methoxy-β-tetralone, for which experimental work was not done.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call