Abstract

Characteristic magnetizations from Middle Jurassic dacitic to andesitic subaerial volcanics (the Fulstone and Artesia Formations) in the Buckskin Mountain Range, western central Basin and Range Province, are well-grouped, generally display univectorial decays to the origin in demagnetization and have hematite blocking temperatures restricted almost entirely to above 620°C. Petrographic, rock magnetic and electron microprobe investigations confirm that nearly pure hematite is the essential magnetic phase (up to about 10 vol. %) occurring as a replacement of coarse titaniferous magnetite phenocrysts and fine groundmass particles, as a secondary alteration product of ferromagnesian phenocrysts and as a mobilized phase filling cracks and other open spaces. The presence of antipodal directions in each flow unit and in interbedded volcanoclastic units (some having retained magnetite as a major magnetic phase) and magnetite-dominated remanences in time-equivalent intrusives cutting the flows indicates that the volcanics acquired their hematite remanence, a faithful record of the geomagnetic field, in high-temperature, deuteric oxidation during and following their emplacement, not during a later thermal event such as regional metamorphism. The remanence is probably a thermochemical remanent magnetization, although part may be of thermoremanent origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call