Abstract

The bond dissociation energies (BDEs), fluoride and fluorocation affinities, and electron affinities of SeF(n) (n = 1-6), SeOF(n) (n = 0-4), and SeO(2)F(n) (n = 0-2) have been predicted with coupled cluster CCSD(T) theory extrapolated to the complete basis set limit. To achieve near chemical accuracy, additional corrections were added to the complete basis set binding energies based on frozen core coupled cluster theory energies. These included corrections for core-valence effects, scalar relativistic effects, for first-order atomic spin-orbit effects, and vibrational zero point energies. The adiabatic BDEs contain contributions from product reorganization energies and, therefore, can be much smaller than the diabatic BDEs and can vary over a wide range. For thermochemical calculations, the adiabatic values must be used, whereas for bond strength and kinetic considerations, the diabatic values should be used when only small displacements of the atoms without change of the geometry of the molecule are involved. The adiabatic Se-F BDEs of SeF(n) (n = 1-6) are SeF(6) = 90, SeF(5) = 27, SeF(4) = 93, SeF(3) = 61, SeF(2) = 86, and SeF = 76 kcal/mol, and the corresponding diabatic values are SeF(6) = 90, SeF(5) = 88, SeF(4) = 93, SeF(3) = 74, SeF(2) = 86, and SeF = 76 kcal/mol. The adiabatic Se-O BDEs of SeO(n) (n = 1-3), SeOF(n) (n = 1-4), and SeO(2)F(n) (n = 1,2) range from 23 to 107 kcal/mol, whereas the diabatic ones range from 62 to 154 kcal/mol. The adiabatic Se-F BDEs of SeOF(n) (n = 1-4) and SeO(2)F(n) (n = 1,2) range from 20 to 88 kcal/mol, whereas the diabatic ones range from 73 to 112 kcal/mol. The fluoride affinities of SeF(n), (n = 1-6), SeO(n), (n = 1-3), SeOF(n), (n = 1-4), and SeO(2)F(n) (n = 1,2) range from 15 to 121 kcal/mol, demonstrating that the Lewis acidity of these species covers the spectrum from very weak (SeF(6)) to very strong (SeO(3)) acids. The electron affinities which are a measure of the oxidizing power of a species, span a wide range from 1.56 eV in SeF(4) to 5.16 eV in SeF(5) and for the free radicals are much higher than for the neutral molecules. Another interesting feature of these molecules and ions stems from the fact that many of them possess both a Se free valence electron pair and a free unpaired valence electron, raising the questions of their preferred location and their influence on the Se-F and Se═O bond strengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.