Abstract
Multifunctional energetic structural materials (MESMs) are a new class of energetic materials which release energy due to exothermic chemical reactions initiated under shock loading conditions. In order to analyze shock-induced chemical reactions (SICR) for MESMs, theoretical models have been developed to calculate the Hugoniot data which include the heat released by shock temperature controlled reactions. The temperature rise of porous materials due to shock compression is first calculated using a constant volume and pressure adjustment. Then the Arrhenius reaction rate and Avrami-Erofeev kinetic models are used to calculate the extent of reaction of MESMs under shock compression. Thermochemical models for shock-induced reactions, in which the reaction efficiency is considered, are given by combining the shock temperature rise with the chemical reaction kinetics. The Hugoniot relations and temperatures are calculated by using the proposed method. The models developed have been validated against the experimental SICR data involving Fe2O3/Al, Al/Ni, and Ti/Ni mixtures. It has been shown that the theoretical calculations correlate reasonably well with the corresponding experimental and simulation results. The models presented can be used to predict the reaction results of MESMs over a wide range of pressure satisfactorily.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.