Abstract

Solubilities have been determined at 25°C for iodine in binary mixtures of carbon tetrachloride with cyclohexane, n-hexane, n-heptane, and octamethylcyclotetrasiloxane (OMCTS) and in mixtures of cyclohexane with n-hexane and OMCTS; and for benzil in binary mixtures of carbon tetrachloride with cyclohexane, n-hexane, and n-heptane, mixtures of n-hexane with cyclohexane and n-heptane, and mixtures of benzene with cyclohexane and toluene. With the exception of the benzene+cyclohexane system, the nearly ideal binary solvent model predicts these solubilities with a maximum deviation of 6% and an overall standard deviation of 2.4%. The model correctly predicts minima for solubility (mole fraction) of iodine in the OMCTS systems, and predicts solubilities within 4% for benzil in the carbon tetrachloride+n-hexane system, in which the solubility changes by a factor of 14. The failure of the model for predicting solubilities of benzil in mixtures of benzene and cyclohexane (maximum error of 25% for and 18-fold range of solubilities) is possibly due to specific interactions between benzil and benzene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.